Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 23(1)2021 Dec 21.
Article in English | MEDLINE | ID: covidwho-1580702

ABSTRACT

Right ventricular (RV) and left ventricular (LV) dysfunction is common in a significant number of hospitalized coronavirus disease 2019 (COVID-19) patients. This study was conducted to assess whether the improved mitochondrial bioenergetics by cardiometabolic drug meldonium can attenuate the development of ventricular dysfunction in experimental RV and LV dysfunction models, which resemble ventricular dysfunction in COVID-19 patients. Effects of meldonium were assessed in rats with pulmonary hypertension-induced RV failure and in mice with inflammation-induced LV dysfunction. Rats with RV failure showed decreased RV fractional area change (RVFAC) and hypertrophy. Treatment with meldonium attenuated the development of RV hypertrophy and increased RVFAC by 50%. Mice with inflammation-induced LV dysfunction had decreased LV ejection fraction (LVEF) by 30%. Treatment with meldonium prevented the decrease in LVEF. A decrease in the mitochondrial fatty acid oxidation with a concomitant increase in pyruvate metabolism was noted in the cardiac fibers of the rats and mice with RV and LV failure, respectively. Meldonium treatment in both models restored mitochondrial bioenergetics. The results show that meldonium treatment prevents the development of RV and LV systolic dysfunction by enhancing mitochondrial function in experimental models of ventricular dysfunction that resembles cardiovascular complications in COVID-19 patients.


Subject(s)
Cardiotonic Agents/pharmacology , Methylhydrazines/pharmacology , Animals , COVID-19/complications , Cardiotonic Agents/therapeutic use , Cardiotoxicity/drug therapy , Disease Models, Animal , Endothelium/drug effects , Heart Failure/drug therapy , Heart Failure/metabolism , Heart Ventricles/drug effects , Hydrogen Peroxide/metabolism , Lung/drug effects , Male , Methylhydrazines/therapeutic use , Mice, Inbred C57BL , Mitochondria/drug effects , Oxygen Saturation/drug effects , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Reperfusion Injury/drug therapy , Stroke Volume/drug effects , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Right/drug therapy , COVID-19 Drug Treatment
2.
Ann Noninvasive Electrocardiol ; 26(4): e12846, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1218078

ABSTRACT

BACKGROUND: Since there was no proven treatment of coronavirus disease 2019 (COVID-19), hydroxychloroquine-azithromycin (HCQ-AZM) combination is being used in different countries as a treatment option. Many controversies exist related to the safety and effectiveness of this combination, and questions about how HCQ-AZM combination affects the ventricular repolarization are still unknown. OBJECTIVE: The aim of the study was to show whether the hydroxychloroquine-azithromycin (HCQ-AZM) combination prolonged Tpeak-to-end (TpTe) duration and TpTe/QT interval ratio or not. METHODS: One hundred and twenty-six consequent COVID-19(+) patients meeting the study criteria were enrolled in this study. Baseline ECGs were obtained immediately after hospitalization and before commencing the HCQ-AZM combination. On-treatment ECG was obtained 24-48 hr after the loading dose of HCQ/AZM. ECG parameters including PR interval, QRS duration, QT interval, QTc interval, TpTe duration, and TpTe/QT interval ratio were assessed. Demographic and laboratory findings were collected from an electronic recording system. RESULTS: ECGs of 126 COVID-19(+) patients who received HCQ-AZM combination were assessed. Mean baseline QTc (by Fridericia formula), TpTe, and TpTe/QT ratio were 420.0 ± 26.5 ms, 82.43 ± 9.77 ms, and 0.22 ± 0.02, respectively. On-treatment QTc, TpTe and TpTe/QT ratio were 425.7 ± 27.18 ms, 85.17 ± 11.17 ms, and 0.22 ± 0.03, respectively. No statistically significant acute impacts of HCQ-AZM combination on TpTe duration and TpTe/QT interval ratio were observed compared with baseline values. No ventricular tachycardia/fibrillation and the significant conduction delays were seen during in-hospital follow-up. CONCLUSION: HCQ-AZM combination increased TpTe duration. However, no significant impact on TpTe/QT interval ratio was observed.


Subject(s)
Azithromycin/pharmacology , COVID-19 Drug Treatment , Electrocardiography/drug effects , Heart Ventricles/drug effects , Hydroxychloroquine/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Administration Schedule , Drug Therapy, Combination , Enzyme Inhibitors/pharmacology , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Treatment Outcome
3.
Circ Arrhythm Electrophysiol ; 13(8): e008627, 2020 08.
Article in English | MEDLINE | ID: covidwho-641777

ABSTRACT

BACKGROUND: During acute infections, the risk of malignant ventricular arrhythmias is increased, partly because of a higher propensity to develop QTc prolongation. Although it is generally believed that QTc changes almost exclusively result from concomitant treatment with QT-prolonging antimicrobials, direct effects of inflammatory cytokines on ventricular repolarization are increasingly recognized. We hypothesized that systemic inflammation per se can significantly prolong QTc during acute infections, via cytokine-mediated changes in K+ channel expression. METHODS: We evaluated (1) the frequency of QTc prolongation and its association with inflammatory markers, in patients with different types of acute infections, during active disease and remission; (2) the prevalence of acute infections in a cohort of consecutive patients with Torsades de Pointes; (3) the relationship between K+ channel mRNA levels in ventricles and peripheral blood mononuclear cells and their changes in patients with acute infection over time. RESULTS: In patients with acute infections, regardless of concomitant QT-prolonging antimicrobial treatments, QTc was significantly prolonged but rapidly normalized in parallel to CRP (C-reactive protein) and cytokine level reduction. Consistently in the Torsades de Pointes cohort, concomitant acute infections were highly prevalent (30%), despite only a minority (25%) of these cases were treated with QT-prolonging antimicrobials. KCNJ2 K+ channel expression in peripheral blood mononuclear cell, which strongly correlated to that in ventricles, inversely associated to CRP and IL (interleukin)-1 changes in acute infection patients. CONCLUSIONS: During acute infections, systemic inflammation rapidly induces cytokine-mediated ventricular electrical remodeling and significant QTc prolongation, regardless concomitant antimicrobial therapy. Although transient, these changes may significantly increase the risk of life-threatening ventricular arrhythmia in these patients. It is timely and warranted to transpose these findings to the current coronavirus disease 2019 (COVID-19) pandemic, in which both increased amounts of circulating cytokines and cardiac arrhythmias are demonstrated along with a frequent concomitant treatment with several QT-prolonging drugs. Graphic Abstract: A graphic abstract is available for this article.


Subject(s)
Communicable Diseases/metabolism , Cytokines/metabolism , Heart Arrest/metabolism , Heart Rate , Heart Ventricles/metabolism , Inflammation/metabolism , Leukocytes, Mononuclear/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Torsades de Pointes/metabolism , Action Potentials , Acute Disease , Adult , Aged , Aged, 80 and over , Anti-Infective Agents/adverse effects , Communicable Diseases/drug therapy , Communicable Diseases/epidemiology , Communicable Diseases/physiopathology , Female , Heart Arrest/epidemiology , Heart Arrest/physiopathology , Heart Rate/drug effects , Heart Ventricles/drug effects , Heart Ventricles/physiopathology , Humans , Inflammation/epidemiology , Inflammation/physiopathology , Leukocytes, Mononuclear/drug effects , Male , Middle Aged , Potassium Channels, Inwardly Rectifying/genetics , Prevalence , Risk Factors , Signal Transduction , Time Factors , Torsades de Pointes/epidemiology , Torsades de Pointes/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL